x y z | f₁ f₂

0 1

1 0 0

1 0 1

1 1 0

1 1 1

0 1 0 1 0

0 1 1 1 1

1 1

0 0

1 0

0 1

1 1

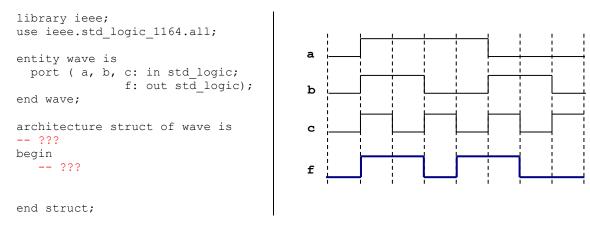
0 1

Homework 1

(Due date: September 23rd @ 11:59 pm)

Presentation and clarity are very important! Show your procedure!

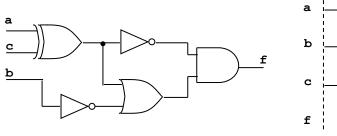
PROBLEM 1 (31 PTS)

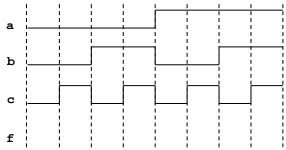

a) Simplify the following functions using ONLY Boolean Algebra Theorems. For each resulting simplified function, sketch the logic circuit using AND, OR, XOR, and NOT gates. (15 pts)

$$\checkmark F = \overline{x} + x(y + \overline{z}) \qquad \checkmark F(x, y, z) = \prod (M_2, M_4, M_6, M_7) \qquad \checkmark F = (z + \overline{y})(\overline{z} + x)(\overline{y} + x)$$

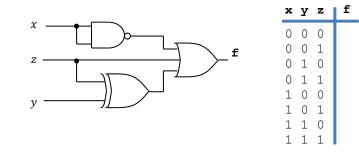
- b) Using Boolean Algebra Theorems, prove that: $x(y \oplus z) = (xy) \oplus (xz)$ (6 pts)
- c) For the following Truth table with two outputs: (10 pts)
 - Provide the Boolean functions using the Canonical Sum of Products (SOP), and Product of Sums 0 0 0 (POS). (4 pts) 0
 - Express the Boolean functions using the minterms and maxterms representations.
 - Sketch the logic circuits as Canonical Sum of Products and Product of Sums. (4 pts)

PROBLEM 2 (24 PTS)


a) The following is the timing diagram of a logic circuit with 3 inputs. Sketch the logic circuit that generates this waveform. Then, complete the VHDL code. (8 pts)

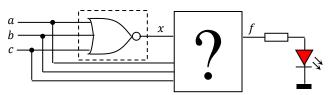


b) Complete the timing diagram of the logic circuit whose VHDL description is shown below: (5 pts)


library ieee; use ieee.std_logic_1164.all;	a		ļ						
<pre>entity circ is port (a, b, c: in std_logic; f: out std_logic); end circ;</pre>	b						 		
<pre>architecture struct of circ is signal x, y: std_logic;</pre>	с			ļ					
begin	х								ļ
<pre>f <= y xor (not a); x <= a nand b; y <= x xnor (not c);</pre>	У			 	• 	 	 	 	
end struct;	f	 		 	 	 	 	 	 !

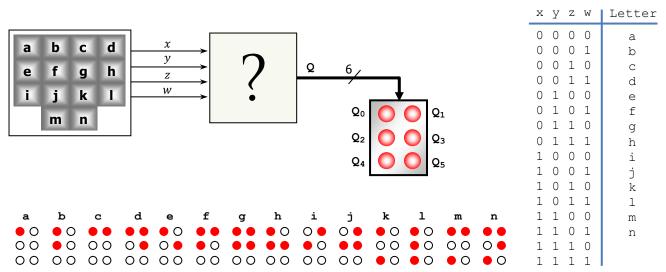
c) Complete the timing diagram of the following circuit: (5 pts)

d) Complete the truth table describing the output of the following circuit and write the simplified Boolean equation (6 pts).


PROBLEM 3 (10 PTS)

f =

- Complete the truth table for a circuit with 4 inputs x, y, z, w that activates an output (f = 1) when the number of 1's in the inputs is even. For example: If $xyzw = 1100 \rightarrow f = 1$. If $xyzw = 1011 \rightarrow f = 0$.
- Design (provide the simplified Boolean equation for *f* and sketch the logic circuit).


PROBLEM 4 (11 PTS)

 Design a circuit (<u>simplify your circuit</u>) that verifies the logical operation of a 3-input NOR gate. f = '1' (LED ON) if the NOR gate does NOT work properly. Assumption: when the NOR gate is not working, it generates 1's instead of 0's and vice versa.

PROBLEM 5 (25 PTS)

- A 14-letter keypad produces a 4-bit code as shown in the table. We want to design a logic circuit that converts those 4-bit codes to Braille code, where the 6 dots are represented by LEDs. A raised (or embossed) dot is represented by an LED ON (logic value of `1'). A missing dot is represented by a LED off (logic value of `0').
 - ✓ Complete the truth table for each output (Q_0 - Q_5). (4 pts)
 - ✓ Provide the simplified expression for each output (Q_0 - Q_5). Use Karnaugh maps for Q_3 , Q_2 , Q_0 and the Quine-McCluskey algorithm for Q_5 , Q_4 , Q_1 . Note it is safe to assume that the codes 1110 and 1111 will not be produced by the keypad.

